Optimization of the electrospray-assisted encapsulation of goldenberry and purple passion fruit blend in alginate hydrogels

Authors

  • Ana María Naranjo Durán Grupo de Toxicología, Alimentos y Alternativas Terapéuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Calle 67 No. 53–108, Medellín, Colombia.
  • Valeria Ángel Cardona Grupo de Toxicología, Alimentos y Alternativas Terapéuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Calle 67 No. 53–108, Medellín, Colombia.
  • Julián Quintero Quiroz Facultad de Ciencias de la Nutrición y los Alimentos, Universidad CES, Calle 10 A No. 22-04, Medellín, Colombia.
  • Gelmy Luz Ciro Gómez Grupo de Toxicología, Alimentos y Alternativas Terapéuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Calle 67 No. 53–108, Medellín, Colombia.

DOI:

https://doi.org/10.32870/rayca.vi0.118

Keywords:

Polyphenolic compounds, bioaccessibility, ionic gelation, electrospray.

Abstract

Polyphenolic compounds (PC) present in fruits are widely recognized for their antioxidant capacity and their role in the prevention of non-communicable diseases. However, their effectiveness depends on bioaccessibility within the human body. Encapsulation by ionic gelation has emerged as a promising strategy to enhance this property, although conventional conditions often result in large particle sizes (PS). This study aimed to optimize ionic gelation assisted by electrospray to reduce PS and improve the bioaccessibility of PCs from a mixture of Physalis peruviana (cape gooseberry) and Passiflora edulis (purple passion fruit). A central composite design combined with response surface methodology was applied to evaluate the effects of flow rate, needle height, and voltage on PS, sphericity (S), aspect ratio (AR), and process yield (PY). Results showed that increasing needle height decreased PS, whereas lowering flow rate improved PY. Optimal conditions (flow rate: 4,33 mL/min; needle height: 11,59 cm; voltage: 12,56 kV) produced particles with a size of 929,51 ± 374,48 ?m, alongside improvements in S and AR. Bioaccessibility of PCs increased markedly, from 3,95 ± 0,88% in the free fruit mixture to 48,42 ± 3,22 % in the encapsulated form, representing a 12-fold enhancement. These findings demonstrate the potential of electrospray-assisted ionic gelation in food applications aimed at improving the delivery of bioactive compounds such as polyphenols.

References

Agarwal, T., Narayana, S. N. G. H., Pal, K., Pramanik, K., Giri, S., & Banerjee, I. (2015). Calcium alginate–carboxymethyl cellulose beads for colon-targeted drug delivery. International Journal of Biological Macromolecules, 75, 409–417. https://doi.org/10.1016/J.IJBIOMAC.2014.12.052

Alkhatib, H., Mohamed, F., Akkawi, M. E., Alfatama, M., Chatterjee, B., & Doolaanea, A. A. (2020). Microencapsulation of black seed oil in alginate beads for stability and taste masking. Journal of Drug Delivery Science and Technology, 60, 102030. https://doi.org/10.1016/j.jddst.2020.102030

Azad, A. K., Al-Mahmood, S. M. A., Chatterjee, B., Wan Sulaiman, W. M. A., Elsayed, T. M., & Doolaanea, A. A. (2020). Encapsulation of black seed oil in alginate beads as a pH-sensitive carrier for intestine-targeted drug delivery: In vitro, in vivo and ex vivo study. Pharmaceutics, 12(3). https://doi.org/10.3390/pharmaceutics12030219

Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018-0119-1

Correia, D. M., Gonçalves R., Ribeiro, C., Sencadas, V., Botelho, C., Gomez Ribelles, J. L., & Lanceros Méndez, S. (2014). Electrosprayed poly (vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 4(62), 33013–33021. https://doi.org/10.1039/c4ra04581e

Faramarzi, A. R., Barzin, J., & Mobedi, H. (2016). Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers and Polymers, 17(11), 1806–1819. https://doi.org/10.1007/s12221-016-6685-3

Fredes, C., Osorio, M. J., Parada, J., & Robert, P. (2018). Stability and bioaccessibility of anthocyanins from maqui (Aristotelia chilensis [Mol.] Stuntz) juice microparticles. LWT – Food Science and Technology, 91, 549–556. https://doi.org/10.1016/j.lwt.2018.01.090

González, R. E., Tarón, A., & Morón, L. B. (2015). Formación de microcápsulas de tamaño controlado por gelación iónica utilizando mezclas biopoliméricas binarias. Información Tecnológica, 26(6), 31–38. https://doi.org/10.4067/S0718-07642015000600005

Grgi?, J., Šelo, G., Planini?, M., Tišma, M., & Buci?-Koji?, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923. https://doi.org/10.3390/antiox9100923

Grosso, G., Micek, A., Godos, J., Pajak, A., Sciacca, S., Galvano, F., & Giovannucci, E. L. (2017). Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose–response meta-analysis. American Journal of Epidemiology, 185(12), 1304–1316. https://doi.org/10.1093/aje/kww207

Instituto Colombiano de Normas Técnicas y Certificación. (2020). NTC 4580: Frutas frescas. Uchuva. Especificaciones. ICONTEC.

Instituto Colombiano de Normas Técnicas y Certificación. (2020). NTC 6456: Frutas frescas. Gulupa. Especificaciones. ICONTEC.

Joaquim, A., Paul, O., Ibezim, M., Johnson, D., Falconer, A., Wu, Y., Williams, F., & Mu, R. (2022). Electrospray deposition of polyvinylidene fluoride (PVDF) microparticles: Impact of solvents and flow rate. Polymers, 14(13). https://doi.org/10.3390/polym14132702

Martinovi?, J., Lukinac, J., Juki?, M., Ambrus, R., Planini?, M., Šelo, G., Klari?, A. M., Perkovi?, G., & Buci?-Koji?, A. (2023). In vitro bioaccessibility assessment of phenolic compounds from encapsulated grape pomace extract by ionic gelation. Molecules, 28(13). https://doi.org/10.3390/molecules28135285

Massounga Bora, A. F., Ma, S., Li, X., & Liu, L. (2018). Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International. https://doi.org/10.1016/j.foodres.2017.11.047

Morais, A. Í. S., Vieira, E. G., Afewerki, S., Sousa, R. B., Honorio, L. M. C., Cambrussi, A. N. C. O., Santos, J. A., Bezerra, R. D. S., Furtini, J. A. O., Silva-Filho, E. C., Webster, T. J., & Lobo, A. O. (2020). Fabrication of polymeric microparticles by electrospray: The impact of experimental parameters. Journal of Functional Biomaterials, 11(1). https://doi.org/10.3390/jfb11010004

Naranjo-Durán, A. M., Quintero-Quiroz, J., Rojas-Camargo, J., & Ciro-Gómez, G. L. (2021). Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-80119-1

Naranjo-Durán, A. M., Quintero-Quiroz, J., Ciro-Gómez, G. L., Barona-Acevedo, M.-J., De, J., & Contreras-Calderón, C. (2023). Characterization of the antioxidant activity, carotenoid profile by HPLC-MS of exotic Colombian fruits (goldenberry and purple passion fruit) and optimization of antioxidant activity of this fruit blend. Heliyon, 9, e17819. https://doi.org/10.1016/j.heliyon.2023.e17819

Naranjo-Durán, A. M., Quintero-Quiroz, J., & Ciro-Gómez, G. L. (2023). Impoving bioaccessibility of polyphenolic compounds in goldenberry–purple passion fruit blend through electrospray-assisted ionic gelation. En 37th EFFoST International Conference: Sustainable Food and Industry 4.0: Towards the 2030 Agenda (p. 317). https://www.effost.org/api/documents/downloadfile?fileid=1623823&forcedownload=False&sectionid=141357

Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208–216. https://doi.org/10.1016/j.ijbiomac.2018.04.167

Nunes, M. A., Costa, A. S. G., Bessada, S., Santos, J., Puga, H., Alves, R. C., Freitas, V., & Oliveira, M. B. P. P. (2018). Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Science of the Total Environment, 644, 229–236. https://doi.org/10.1016/j.scitotenv.2018.06.350

Partovinia, A., & Vatankhah, E. (2019). Experimental investigation into size and sphericity of alginate micro-beads produced by electrospraying technique: Operational condition optimization. Carbohydrate Polymers, 209, 389–399. https://doi.org/10.1016/J.CARBPOL.2019.01.019

World Health Organization. (2020). Non-communicable diseases: Progress monitor 2020. https://doi.org/10.5005/jp/books/11410_18

Zakeri, M., Moghadam, H., Samimi, A., & Mohebbi-Kalhori, D. (2019). Optimization of calcium alginate beads production by electrospray using response surface methodology. Materials Research Express, 6(9). https://doi.org/10.1088/2053-1591/ab3377

Published

2025-11-27