Determinación del cociente de peligrosidad de plaguicidas presentes en biomasa de chiles (capsicum annuum)
Resumen
El estado de Sinaloa, es uno de los mayores productores agrícolas en México, resaltando el cultivo de chile por sus volúmenes y rendimientos de producción. Debido a la producción intensiva se desprenden importantes cantidades de biomasa (tallos y hojas) los cuales comúnmente se descartan sin generar valor agregado, por lo que, en años recientes, estrategias de valorización sugieren su uso como fuente de nutracéuticos y fitoquímicos, sin embargo, si las biomasas se encuentran contaminadas con residuos de plaguicidas, pueden representar un riesgo a la salud. El objetivo del presente estudio fue determinar el cociente de peligrosidad (HQ) y el índice de riesgo (HI) de los plaguicidas identificados en biomasas de chile poblano, jalapeño y pimiento morrón. Para esto se usó la ingesta diaria admitida (IDA), ingesta diaria estimada (EDI), LD50 y la dosis de referencia aguda de los analitos identificados (ARfD). Ninguno de los plaguicidas en las concentraciones cuantificadas representa un riesgo a la salud humana en su consumo de 0.001 kg por día, esto en adultos de 70 kg de peso, por lo que se podría aprovechar para el procesamiento de suplementos alimenticios y/o la extracción de moléculas con valor agregado.
Citas
Agencia de Protección Ambiental de Estados Unidos [EPA]. (2023, fecha última actualización). Términos C. EPA en español. https://espanol.epa.gov/espanol/terminos-c#:~:text=Coeficiente%20de%20peligro%20(Hazard%20Quotient,adversos%20a%20la%20salud%20humana.
Ahmadi, S. M., Farhoosh, R., Sharif, A., & Rezaie, M. (2020). Structure-Antioxidant Activity Relationships of Luteolin and Catechin. Journal of Food Science, 85 (2), 298-305. https://doi.org/10.1111/1750-3841.14994
Antonio, A.S., Wiedemann, L.S.M., & Veiga Junior, V.F. (2018). The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 45(8), 25767-25784. https://doi.org/10.1039/C8RA02067A
Chel-Guerrero, L.D., Castañeda-Corral, G., López-Castillo, M., Scampicchio, M., Morozova, K., Oney-Montalvo, J.E., Ferrentino, G., Acevedo-Fernández, J.J., & Rodríguez-Buenfil, I.M. (2022). In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum chinense By-Products. Molecules, 27(4), 1323. https://doi.org/10.3390/molecules27041323
Chen, C., Qian, Y., Chen, Q., Tao, C., Li, C., & Li, Y. (2011). Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22(7), 1114-1120. https://doi.org/10.1016/j.foodcont.2011.01.007
Chen, Y.H., Wen, X.W., Wang, B., & Nie, P.Y. (2017). Agricultural pollution and regulation: How to subsidize agriculture?. Journal of Cleaner Production, 164, 258-264. https://doi.org/10.1016/j.jclepro.2017.06.216
Cho, S.-Y., Kim, H.-W., Lee, M.-K., Kim, H.-J., Kim, J.-B., Choe, J.-S., Lee, Y.-M., & Jang, H.-H. (2020). Antioxidant and Anti-Inflammatory Activities in Relation to the Flavonoids Composition of Pepper (Capsicum annuum L.). Antioxidants, 9(10), 986. https://doi.org/10.3390/antiox9100986
Fantke, P., Gillespie, B.W., Juraske, R., & Jolliet, O. (2014). Estimating Half-Lives for Pesticide Dissipation from Plants. Environmental Science & Technology, 48(15), 8588-8602. https://doi.org/10.1021/es500434p
Fernandes, I. A., Maciel, G.M., Gonçalves, B.D., Pedro, A.C., Vieira, R.F.T., de Carvalho, K.Q., & Haminiuk. (2023). The bitter side of teas: Pesticide residues and their impact on human health. Food and Chemical Toxicology, 179, 113955. https://doi.org/10.1016/j.fct.2023.113955
Gad Alla, S.A., Loutfy, N.M., Shendy, A.H., & Ahmed, M.T. (2015). Hazard index, a tool for a long term risk assessment of pesticide residues in some commodities, a pilot study. Regulatory Toxicology and Pharmacology, 73(3), 985-991. https://doi.org/10.1016/j.yrtph.2015.09.016
Ginni, G., Kavitha, S., Yukesh Kannah, R., Bhatia, S.K., Adish Kumar, S., Rajkumar, M., Kumar, G., Pugazhendhi, A., Lan Chi, N.T., & Banu, J.R. (2021). Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, 9(4), 105435. https://doi.org/10.1016/j.jece.2021.105435
Goumenou, M., & Tsatsakis, A. (2019). Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicology Reports, 6, 632-636. https://doi.org/10.1016/j.toxrep.2019.06.010
Hayasaka, N., Shimizu, N., Komoda, T., Mohri, S., Tsushida, T., Eitsuka, T., Miyazawa, T., & Nakagawa, N. (2018). Absorption and Metabolism of Luteolin in Rats and Humans in Relation to in Vitro Anti-inflammatory Effects. Journal of Agricultural and Food Chemistry, 66(43), 11320-11329. https://doi.org/10.1021/acs.jafc.8b03273
Herrera-Pool, E., Ramos-Díaz, A.L., Lizardi-Jiménez, M.A., Pech-Cohuo, S., Ayora-Talavera, T., Cuevas-Bernardino, J.C., García-Cruz, U., & Pacheco, N. (2021). Effect of solvent polarity on the Ultrasound Assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves (Capsicum chinense) and its identification by UPLC-PDA-ESI-MS/MS. Ultrasonics Sonochemistry, 76, 105658. https://doi.org/10.1016/j.ultsonch.2021.105658
Jiménez-Ortega, L. A., Bastidas-Bastidas, P. J., Valdez-Baro, O., Báez-Sañudo, M.A., & Heredia, J. B. (2023). Residuos de plaguicidas en biomasa agrícola de chile (Capsicum annuum L.) usando un método QuEChERS acoplado a LC-MS/MS y GC-MS/MS. E-CUCBA, 20(10), 92-102. https://doi.org/10.32870/ecucba.vi20.301
Lee, J., & Mitchell, A. E. (2012). Pharmacokinetics of Quercetin Absorption from Apples and Onions in Healthy Humans. Journal of Agricultural and Food Chemistry, 60(15), 3874-3881. https://doi.org/10.1021/jf3001857
Li, N., Li, J., Ding, D., Xie, J., Zhang, J., Li, W., Ma, y., Gao, F., Niu, T., Wang, C., & Bakpa, E.P. (2021). Optimum Parameters for Extracting Three Kinds of Carotenoids from Pepper Leaves by Response Surface Methodology. Separations, 8(9), 134. https://doi.org/10.3390/separations8090134
McCarty, J.L., Korontzi, S., Justice, C.O., & Loboda, T. (2009). The spatial and temporal distribution of crop residue burning in the contiguous United States. Science of The Total Environment, 407(21), 5701-5712. https://doi.org/10.1016/j.scitotenv.2009.07.009
Nguyen, T. T., Rosello, C., Bélanger, R., & Ratti, C. (2020). Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods, 9 (10), 1468. https://doi.org/10.3390/foods9101468
Oleszek, M., Kowalska, I., Bertuzzi, T., & Oleszek, W. (2023). Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules, 28(1), 342. https://doi.org/10.3390/molecules28010342
Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO] y Organización Mundial de la Salud [OMS]. (2023, diciembre de 2022). Codex Pesticides Residues in Food Online Database. https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/
Secretaría de Agricultura y Desarrollo Rural [SADER]. (2023, 28 de febrero de 2023). Amplía Agricultura campaña Mi Parcela No Se Quema a 28 estados del país. Gobierno de México. https://www.gob.mx/agricultura/prensa/amplia-agricultura-campana-mi-parcela-no-se-quema-a-28-estados-del-pais?idiom=es#:~:text=Datos%20de%20la%20Comisi%C3%B3n%20Nacional,fue%20de%2040%20por%20ciento
Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2023, 08 de junio de 2023). Anuario Estadístico de la Producción Agrícola. Gobierno de México. https://nube.siap.gob.mx/cierreagricola/
Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: are they safe enough for their valorization?. Trends in Food Science & Technology, 114, 133-147. https://doi.org/10.1016/j.tifs.2021.05.002
Stoner, K.A., & Eitzer, B.D. (2013). Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut. PLOS ONE, 11(7): e0159696. https://doi.org/10.1371/journal.pone.0077550
Taghizadeh, S.F., Goumenou, M., Rezaee, R., Alegakis, T., Kokaraki, V., Anesti, O., Sarigiannis, D.A., Tsatsakis, A., & Karimi, G. (2019). Cumulative risk assessment of pesticide residues in different Iranian pistachio cultivars: Applying the source specific HQS and adversity specific HIA approaches in Real Life Risk Simulations (RLRS). Toxicology Letters, 313, 91-100. https://doi.org/10.1016/j.toxlet.2019.05.019
Teigiserova, D.A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.136033
Ullah, A., Khan, D., Khan, I., & Zheng, S. (2018). Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environmental Science and Pollution Research, 25, 13938-13955. https://doi.org/10.1007/s11356-018-1530-4
Wirsching, J., Pagel, H., Ditterich, F., Uksa, M., Werneburg, M., Zwiener, C., Berner, D., Kandeler, E., & Poll, C. (2020). Biodegradation of Pesticides at the Limit: Kinetics and Microbial Substrate Use at Low Concentrations. Frontiers in Microbiology, 11, https://doi.org/10.3389/fmicb.2020.02107
Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. (2019). Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
Yahia, E.M., García-Solís, P., & Maldonado-Celis, M.E. (2019). Chapter 2 - Contribution of Fruits and Vegetables to Human Nutrition and Health. In Yahia, E.M. (Ed.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 19-45). Woodhead Publishing, https://doi.org/10.1016/B978-0-12-813278-4.00002-6
Zhang, H., Hu, J., Qi, Y., Li, C., Chen, J., Wang, X., He, J., Wang, S., Hao, J., Zhang, L., Zhang, L., Zhang, Y., Li, R., Wang, S., & Chai, F. (2017). Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. Journal of Cleaner Production, 149, 629-635. https://doi.org/10.1016/j.jclepro.2017.02.092