The benefits of an Emerging markets over weighted portfolio versus a globally diversified one
DOI:
https://doi.org/10.32870/myn.v1i42.7548Keywords:
Portfolio selection, Emerging markets, Diversification, Markov-Switching models.Abstract
In the present paper we test the benefit of overweighting a Global stock portfolio in Emerging markets. This, against a globally full-diversified one. By using a Gaussian two-regime Markov-Switching model in the S&P BMI global, the U.S. S&P 500; the LATAM S&P, the East Europe S&P, the S&P Asia-Pacific, the S&P mid-west and Africa and the S&P BRIC indexes, we tested the benefit of global diversification. From a U.S. dollar based investor perspective, we found in our results that is preferable to invest in a portfolio with only U.S. and Emerging markets stocks, instead of a global broad diversified portfolio. By the fact that a less diversified portfolio has a better mean-variance efficiency in a global diversification context, this result seems challenge the main assumptions of the classical portfolio theory.References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1016/J.CUB.2017.09.001
Ang, A., & Chen, J. (2002). Asymmetric correlation of equity portfolios. Journal of Financial Economics, 63(212), 443–494. https://doi.org/10.1016/S0304-405X(02)00068-5
Balcilar, M., Demirer, R. & Hammoudeh, S. (2013). Investor herds and regime-switching: Evidence from Gulf Arab stock markets. Journal of International Financial Markets, Institutions & Money, 23, 295–321. https://doi.org/10.1016/j.intfin.2012.09.007
Balcilar, M., van Eyden, R., Uwilingiye, J., & Gupta, R. (2017). The Impact of Oil Price on South African GDP Growth: A Bayesian Markov Switching-VAR Analysis. African Development Review, 29(2), 319–336. https://doi.org/10.1111/1467-8268.12259
Bollerslev, T., Engle, R. F., Wooldridge, J. M., Engle, F. & Wooldridge, M. (1988). A Capital Asset Pricing Model with time-varying Covariances, Journal of Political Economy, 96(1), 116–131.
Cabrera, G., Coronado, S., Rojas, O., & Venegas-Martínez, F. (2017). Synchronization and Changes in Volatilities in the Latin American’S Stock Exchange Markets. International Journal of Pure and Applied Mathematics, 114(1). https://doi.org/10.12732/ijpam.v114i1.10
Canarella, G., & Pollard, S. K. (2007). A switching ARCH (SWARCH) model of stock market volatility: some evidence from Latin America. International Review of Economics, 54(4), 445–462. https://doi.org/10.1007/s12232-007-0025-2
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431.
Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock Market Volatility and Macroeconomic Fundamentals. Review of Economics and Statistics, 95(July). https://doi.org/10.1162/REST_a_00300
Engle, R. F., Ng, V. K., & Rotschild, M. (1990). Asset pricing with Factor-ARCH covariance estructure. Empirical estimates for Treasury bills. Journal of Econometrics, (45), 213–237. https://doi.org/10.1016/0304-4076(90)90099-F
Haas, M., Mittnik, S., & Paolella, M. S. (2009). Asymmetric multivariate normal mixture GARCH. Computational Statistics & Data Analysis, 53(6), 2129–2154. https://doi.org/10.1016/j.csda.2007.12.018
Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57(2), 357–384.
Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45(1–2), 39–70. https://doi.org/10.1016/0304-4076(90)90093-9
Hamilton, J. D. (1994). Time Series Analysis. Princeton: Princeton university press.
Hannan, E. J., & Quinn, B. G. (1979). The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society. Series B (Methodological), 41, 190–195. https://doi.org/10.2307/2985032
Markowitz, H. (1959). Portfolio selection. Efficient diversification of investments. New Haven: Yale University Press.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Markowitz, H. (1956). The optimization of quadratic functions subject to linear constraints. Naval Research Logistic Quarterly, 3(March-June), 1–113.
Mejía, P. (2000). Asymmetries and Common Cycles in Latin America: Evidence from Markov-Switching Models. Economía Mexicana. Nueva Época, IX(2), 189–225.
S&P Dow Jones Indices LLC. (2016). Country clasification methodology. S&P Dow Jones Indices LLC. Retrieved April 26, 2018, from https://us.spindices.com/documents/index-policies/methodology-country-classification.pdf?force_download=true
S&P Dow Jones Indices LLC. (2018). S & P Global BMI , S & P / IFCI Methodology.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Sharpe, W. (1963). A simplified model for portfolio analysis. Management Science, 9(2), 277–293.
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, XIX(3), 425–442.
Valera, H. G. A., & Lee, J. (2016). Do rice prices follow a random walk? Evidence from Markov switching unit root tests for Asian markets. Agricultural Economics, 47(6), 683–695. https://doi.org/10.1111/agec.12265
Wu, J.-T. (2015). Markov regimes switching with monetary fundamental-based exchange rate model. Asia Pacific Management Review, 20(2), 79–89. https://doi.org/10.1016/j.apmrv.2014.12.009
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oscar Valdemar De la Torre-Torres
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Mercados y Negocios by Department of Mercadotecnia y Negocios Internacionales. University of Guadalajara is licensed under a License Creative Commons Attribution-NonCommercial 4.0 International.
The author retains the copyright.